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Abstract. We consider a quantum dot coupled to two leads in the presence of oscillating
external fields applied to the dot and the two leads. Using the nonequilibrium-Green-function
method, the formula for the transient transmission probability (TTP)Tεf ,εi (t

′, t) is derived. The
numerical studies reveal the following facts. Whent ′ − t ∼ 1/0 (0 is the full width of the
resonant state), no visible resonant tunnelling behaviour occurs, andTεf ,εi (t

′, t) strongly depends
on the time at which the electron enters the dot,t , and that at which it exits from it,t ′; when
t ′ − t � 1/0, the resonant tunnelling becomes striking, andTεf ,εi (t

′, t) depends only weakly on
t and t ′. The conventional transmission probabilityTεf ,εi , defined as the limit ast →−∞ and
t ′ → +∞, has a very rich spectrum and exhibits a simultaneous quenching of some channels.
On the basis of the properties ofTεf ,εi , the condition for the occurrence of an electron–photon
pump has also been discussed.

1. Introduction

Recently, the time-dependent transport phenomena in mesoscopic systems have been
attracting more and more attention. One of the interesting problems is that of studying
the effects on the probability of electron transmission through a nanostructure of oscillating
external fields. Theoretically, Sokolovski investigated the resonance tunnelling through a
quantum well in the presence of a harmonic external field, and showed that the resonance
peak split into a family of peaks with the spacingω (the frequency of the external field, in
units in whichh̄ = 1) [1]. Wagner studied the electron resonant transmission through an
oscillating quantum well, and found a rich spectrum of sidebands and a strong simultaneous
reduction at a certain characteristic ratioV/ω [2, 3]. Johansson and Wendin [4] investigated
the probability of transmission through an irradiated double-barrier structure (DBS) with two
different resonant levels in the quantum well. Iñarreaet al [5, 6] used the second-quantized
method to deal with an external electromagnetic field. Yakuboet al [7] investigated
the necessary conditions for photon-assisted tunnelling, etc, to have a strong influence.
Experimentally, a number of new phenomena have been observed, such as the electron–
photon pump, by Kouwenhovenet al [8, 9], and various photon-assisted tunnelling peaks, by
Blick et al [10] and Drexleret al [11]. In most of the previous work, only the conventional
transmission probabilityTεf ,εi was studied [1–4, 12, 13], whereTεf ,εi is defined as the limit
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of the transient transmission probability (TTP),Tεf ,εi (t
′, t), for t → −∞ and t ′ → +∞;

here t and t ′ are the times at which the electron enters and leaves the dot, respectively.
However, since the electron needs a certain time to tunnel through a DBS or to develop
resonant tunnelling behaviour, studying the time dependence behaviour of the TTP witht

and t ′ at finite values is of interest; this is the main goal of this work.
The system under consideration is a quantum dot coupled to two leads connected to

reservoirs. The harmonic external fields are applied to three regions of the system (the
left-hand lead, the right-hand lead, and the quantum dot), respectively. We assume that the
time-dependent external fields only change the single-electron energies without changing
their occupations in the same region (the adiabatic approximation) [14, 15]; moreover, the
effect of the magnetic fields can be neglected.

In this paper, we adopt the nonequilibrium-Green-function (NGF) method to derive the
general formula for the TTP,Tεf ,εi (t

′, t). Compared with the approach of directly solving the
Schr̈odinger equation, two advantages are obvious: a batch of well established techniques
can be used for the calculation, and more statistical information is obtained. (In particular,
if a many-body effect, such as the intra-dot electron–electron Coulomb interaction of the
quantum dot system, is being considered, one can calculate the many-body effect to all
orders in the perturbation by the NGF method.) From the numerical studies we establish
the following facts. Whent ′ − t ∼ 1/0, the resonant tunnelling is not visible. A certain
proportion of the transmission probability will be allocated to the electronic states with
εf − εi 6= nω (n = 0,±1,±2, . . .), andTεf ,εi (t

′, t) is strongly dependent on both the timet
at which the electron enters the dot and that,t ′, at which it leaves the dot. On the other hand,
whent ′ − t � 1/0, the resonant behaviour is striking, andTεf ,εi (t

′, t) depends only weakly
on t ′ and t . The condition for photon-assisted resonant tunnelling ist ′ − t � 1/0 > 1/ω.
By taking the limitst → −∞ and t ′ → +∞ for the TTP, the conventional transmission
probability,Tεf ,εi , can be easily obtained. The numerical study shows thatTεf ,εi has a rich
spectrum and exhibits a simultaneous quenching behaviour; these results are similar to those
obtained earlier by Wagner [2].

The outline of this paper is as follows. In section 2, the model is presented and
Keldysh’s nonequilibrium-Green-function method is used to derive the transient transmission
probability Tεf ,εi (t

′, t). In section 3, we present numerical studies of the TTP, and discuss
under what conditions the resonant behaviour can be developed. The properties of the
conventional transmission probabilityTεf ,εi are studied in section 4. On the basis of the
properties ofTεf ,εi , the condition for the occurrence of an electron–photon pump is also
discussed in this section. A brief summary is presented in section 5.

2. Model and formulation

The system under consideration is a quantum dot coupled to two leads through two barriers,
and can be described by the following Hamiltonian:

H(t) = Hlead(t)+Hdot(t)+HT
where

Hlead(t) =
∑
k∈L

εk(t)a
†
kak +

∑
p∈R

εp(t)b
†
pbp

Hdot(t) = ε0(t)c
†
0c0

HT =
∑
k∈L

Vka
†
kc0+

∑
p∈R

Vpb
†
pc0+ HC.

(1)
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Hlead(t) describes noninteracting electrons in the leads.a
†
k (ak) andb†p (bp) are the creation

(annihilation) operators of the electron in the left-hand and the right-hand lead, respectively.
Hdot(t) models the quantum dot. For simplicity, we only consider a single state in the
quantum dot, and neglect the intra-dot electron–electron Coulomb interaction.HT denotes
the tunnelling part, which is time independent. We assume that the time-dependent external
fields only cause rigid shifts of the single-electron energiesεα(t) (hereα = 0, k, p), and do
not change their occupations (the adiabatic approximation) [14–16], and that the effect of
the magnetic fields can be neglected. We separateεα(t) into two parts:εα(t) = εα+1β(t),
where β = L,R, 0 corresponds to the left-hand lead, the right-hand lead, and the dot,
respectively, andεα stands for the time-independent single-electron energies without time-
dependent external fields.1β(t) is a time-dependent part arising from the external fields.

In the following we derive the general formula for the TTP,Tεf ,εi (t
′, t), by using the

nonequilibrium-Green-function technique. A wave packet incident from the noninteracting
states in the left-hand lead at timet can be described as [13]

φ(εi, t) =
∑
k

1√
ρL(εk)1ε

ϕ

(
εk − εi
1ε

)
|k, t〉 (2)

whereϕ(x) = 1 for −1/2 < x < 1/2, ϕ(x) = 0 for x > 1/2 or x < −1/2; andρL(εk) is
the density of states in the left-hand lead. The centre of the wave packet is located atεi
with a small energy width1ε, 1ε < ω, and1ε < 0.

The TTP,Tεf ,εi (t
′, t), is defined as the probability that an electron with the energyεi

incident from the left-hand lead at timet will transmit through the quantum dot into the
right-hand lead, with the energyεf at time t ′, and can obviously be written as

Tεf ,εi (t
′, t) =

∑
p

Tp,εi (t
′, t)δ(εp − εf )

Tp,εi (t
′, t) =

∣∣∣∣∣θ(t ′ − t)〈p, t ′|∑
k

1√
ρL(εk)1ε

ϕ

(
εk − εi
1ε

)
|k, t〉

∣∣∣∣∣
2

. (3)

Clearly, θ(t ′ − t)〈p, t ′|k, t〉 is related to the retarded Green functionGr
p,k(t

′, t) by

Gr
p,k(t

′, t) ≡ −iθ(t ′ − t)〈0|{bp(t ′), a†k(t)}|0〉 = −iθ(t ′ − t)〈p, t ′|k, t〉 (4)

where |0〉 denotes the electronic vacuum. By using the Keldysh equation, one can easily
find that

Gr
p,k(t

′, t) =
∫

dt1 dt2 VpV
∗
k g

r
p(t
′, t1)Gr

00(t1, t2)g
r
k(t2, t). (5)

Here

grα(t
′, t) = −iθ(t ′ − t) exp

{
− i

∫ t ′

t

dt1 εα(t1)

}
(α = k, p)

is the exact Green function of the electron in the left-hand or the right-hand leads without
coupling between the leads and the dot, andGr

00(t1, t2) ≡ −iθ(t1 − t2)〈0|{c0(t1), c
†
0(t2)}|0〉.

Substituting equation (5) into equation (3), the sum overk (or p),
∑

k (or
∑

p), can be
changed into an integral with the help of the density of states in the left-hand (or right-
hand) lead,

∫
dε ρL(ε) (or

∫
dε ρR(ε)). Then the TTPTεf ,εi (t

′, t) becomes

Tεf ,εi (t
′, t) = 1

1ε

∫ εi+1ε/2

εi−1ε/2
dεk1

∫ εi+1ε/2

εi−1ε/2
dεk

∫ t ′

t

dt1 dt2 ds1 ds2
(2π)2

0R(εf , t1, s1)

× 0L(εi, s2, t2)Gr
00(t1, t2)G

r∗
00(s1, s2)e

−i[εf (s1−t1)+εkt2−εk1s2] (6)
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and the generalized linewidth function0α(ε, t, s) is defined as

0α(ε, t, s) = 2πρα(ε)V (ε)V
∗(ε) exp

{
−i
∫ s

t

dt 1α(t)

}
(7)

whereα = L,R, V (εk) = Vk andV (εp) = Vp.
In the following we make the wide-band-limit (WBL) approximation [13–17], in which

the linewidth

0α(ε) = 2πρα(ε)V (ε)V
∗(ε) (α = L,R)

is an energy-independent constant. The WBL approximation is widely used in mesoscopic
transport problems, and using this approximation is justified under the following conditions:

(i) the bandwidth of the leads is much larger than the linewidth0α(ε);
(ii) the density of states (ρα(ε) (α = L,R)) and the hopping matrix elements (V (εk)

andV (εp)) vary slowly with energy over a range of several0 aroundε0;
(iii) the energy level of the quantum dot,ε0, is not close to the band bottom of the

leads.

Under the WBL approximation and by using Dyson’s equation, the retarded Green function
Gr

00(t1, t2) can be obtained as

Gr
00(t1, t2) = −iθ(t1− t2) exp

{
−i
∫ t1

t2

ε0(t) dt − 0
2
(t1− t2)

}
(8)

where0 = 0L + 0R. Substituting the expression forGr
00(t1, t2) into equation (6), and

considering only the harmonic external fields, i.e.1α(t) = 1α cosωt (α = L,R, 0), the
TTP Tεf ,εi (t

′, t) can be reduced to

Tεf ,εi (t
′, t) = 0L0R

(2π)21ε

∣∣∣∣ ∫ εi+1ε/2

εi−1ε/2
dεk

∫ t ′

t

dt1

∫ t1

t

dt2 exp

{
i

(
εf + i

0

2
− ε0

)
t1

+ i
1R −10

ω
sinωt1

}
exp

{(
−iεk + 0

2
+ iε0

)
t2− i

1L −10

ω
sinωt2

}∣∣∣∣2.
(9)

By using the identity

exp{ia sinx} =
∑
k

Jk(a)e
ikx

and carrying out the integration overt1, t2, we obtain

Tεf ,εi (t
′, t) = 0L0R

(2π)21ε

∣∣∣∣∣∑
n,m

Jn

(
1R −10

ω

)
Jm

(
1L −10

ω

)

×
∫ εi+1ε/2

εi−1ε/2

dεk
b

{
eat
′ − eat

a
− ebt+ct

′ − eat

c

}∣∣∣∣∣
2

(10)

where

a = i(εf − εk + nω −mω)

b = i

(
−εk + ε0−mω − i

0

2

)
c = i

(
εf − ε0+ nω + i

0

2

)
.

(11)
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Figure 1. (a) Tεf ,εi (t
′, t) versusεf for varying t ′. The solid, dotted, and dashed curves

correspond tot ′ = 10T , 2T , and T , respectively. (b)Tεf ,εi (t
′, t) versus t ′ for εf = ω.

(c) Tεf ,εi (t
′, t) versust ′ for εf = ω/4 (dashed curve) andεf = ω/2 (solid curve), respectively.

Other parameters:t = 0, εi = ε0 = 0, 0L = 0R = 0.2, ω = 1, 10 = 2, and1R = 1L = 0.
The numbers on the axis forTεf ,εi (t

′, t) in (c) are in units of 10−4.

Similarly, we can obtain the transient reflection probabilityRεr ,εi (t
′, t) (not shown here).

One should notice that∫
Tεf ,εi (t

′, t) dεf +
∫
Rεr ,εi (t

′, t) dεr

is not equal to 1 because the occupation numbern(t) of the quantum dot depends on the
time t .

3. The transient transmission probability

In order to understand the detailed properties of the TTP, we need to perform numerical
studies. From equation (10) one easily finds thatTεf ,εi (t

′, t) depends on the energy width of
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Figure 2. The TTPTεf ,εi (t
′, t) versusεf at differentt , with different values oft ′ − t , and with

εi = ε0 = 0, 0L = 0R = 0.2, 10 = 2, 1L = 1R = 0. (a) t ′ − t = T ; the three solid curves
correspond tot = 0, T/4, andT/2. (b) t ′ − t = 10T ; t = T/4. (c) t ′ − t = 10T ; t = T/2. The
case witht = 0 has been shown in figure 1(a).

the incident wave packet,1ε. The time taken for the electron to tunnel through the dot is
about 1/1ε. If 1ε→ 0, the time will approach∞. In our calculation, to avoid the effect
of 1ε, we set1ε(t ′ − t) at the constant value 2π . For t ′ − t = T (T = 2π/ω is the period
of the external field),1ε ∼ 0.025ω, which satisfies the condition1ε < ω perfectly.

Figure 1(a) showsTεf ,εi (t
′, t) versusεf for different timest ′, for a fixed incidence time

t . For a small time difference,t ′ − t = T ∼ 1/0, a visible proportion of the electron
transmission probability will be distributed among the energies for whichεf − εi 6= nω

(n = 0,±1, . . . ), and no sharp peak emerges. Fort ′ − t = 10T � 1/0, a series of
sharp peaks located at the energies for whichεf − εi = nω (n = 0,±1, . . . ) emerge
while the transmission probability is almost zero for the other energies, i.e. the transmission
probability exhibits a striking resonant behaviour. In fact, whent ′ − t → +∞, the peaks
get higher and narrower, and finally become a series ofδ-functions. Figures 1(b) and 1(c)
showTεf ,εi (t

′, t) versust ′ (with t = 0) for different energiesεf of the electron leaving the
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dot. Forεf − εi = nω, as in figure 1(b),Tεf ,εi (t
′, t) exhibits an oscillatory increase with

the increase of the timet ′ at which the electron leaves the dot. However, forεf − εi 6= nω
(figure 1(c)),Tεf ,εi (t

′, t) tends to show a decrease in the magnitude of the oscillation with
the increase oft ′. The patterns of the oscillation are different for different incidence times
t (not shown here), but all of the oscillation will gradually disappear as the timet ′ → +∞.

Figure 2 showsTεf ,εi (t
′, t) versusεf for different incidence timest for certain time

differencest ′ − t . For t ′ − t = T ∼ 1/0, Tεf ,εi (t
′, t) versusεf is strongly dependent on

the incidence timet (figure 2(a)). On the other hand, fort ′ − t = 10T � 1/0, almost no
visible difference between the cases oft = T/4 (figure 2(b)) andt = T/2 (figure 2(c)) can
be seen.

All of these properties can be understood as follows. For large enough time difference,
t ′ − t � 1/0, an electron can tunnel through the system by many different processes: an
electron can first tunnel from the left-hand lead into the dot through the left-hand barrier
then directly tunnel through the right-hand barrier to the right-hand lead; or, after tunnelling
into the dot, the electron can travel in the dot and be reflected twice (four times, six times,
. . . , etc) by the left-hand and right-hand barrier, and then tunnel to the right-hand lead. In
fact, the TTPTεf ,εi (t

′, t) is the sum of the contributions from all of these processes. Because
of the coherent superposition, the resonant behaviour is well developed. Again sinceω > 0

(i.e. 1/0 > T/2π ), photon-assisted resonant tunnelling emerges too [12, 17]. On the other
hand, for a small time difference, sayt ′ − t ∼ 1/0, an electron tunnels through the system
mainly by the direct tunnelling process, so the tunnelling does not exhibit visible resonant
behaviour. One should note that the conditiont ′ − t � 1/0 for well developed resonant
tunnelling will constrain the upper limit of the response timeτ for resonant tunnelling
devices. The larger0, the shorterτ . If 0 = 1 meV [18], the response timeτ ∼ 10−11 s,
and0 = 0.05 eV, [19],τ ∼ 2× 10−13 s.

4. The conventional transmission probability

By definition, the conventional transmission probability,Tεf ,εi , is the limit of the TTP
(equation (10)):

Tεf ,εi ≡ lim
1ε→0

lim
t ′→+∞
t→−∞

Tεf ,εi (t
′, t)

=
∑
l

0L0R

∣∣∣∣∣∑
n

[
Jn

(
1R −10

ω

)
Jn−l

(
1L −10

ω

)]

×
(
εi − ε0+ nω − lω + i

0

2

)−1
∣∣∣∣∣
2

δ(εf − εi + lω). (12)

Similarly one can obtain the reflection probabilityRεr ,εi as

Rεr ,εi = δ(εr − εi)
[

1−
∑
m

J 2
m

(
10−1L

ω

)
0L0

/(
(εi − ε0−mω)2+ 0

2

4

)]
+
∑
l

02
Lδ(εr − εi − lω)

×
∣∣∣∣∣∑
n

[
Jn

(
10−1L

ω

)
Jn−l

(
10−1L

ω

)/(
εi − ε0+ lω − nω + i

0

2

)]∣∣∣∣∣
2

.

(13)
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Figure 3. Tn→m versus1, with ω = 1, 0L = 0R = 0.02, ε0 = 0, 10 = 0, 1L/1Lmax = 1,
1R/1Rmax = 1, and1Lmax = 8, 1Rmax = 4. (a) Forn = 0, (b) for n = 1.

It can be proved easily that∫
dε (Tε,εi + Rε,εi )

is exactly equal to 1.
Comparing with the case without external fields, the transmission probability exhibits

many extra tunnelling channels originating from the absorption or emission of one or
multiple photons. We introduceTn→m to describe the transmission probability for an electron
incident with the energyεi = nω + ε0 and leaving with the energyεf = mω + ε0. From
our numerical studies, we find the following properties ofTn→m.

(i) If the harmonic external field is only applied to the quantum dot, then one reproduces
the previously obtained results forTn→m versus10/ω (not shown here) obtained by Wagner
(shown in figure 4(b) and figure 5(b) in reference [2]).

(ii) For asymmetric harmonic external fields applied to the left-hand and right-hand
leads, i.e.1R 6= 1L, Tn→m versus1α/ω (α = L,R) is as given in figure 3. Like in case
(i), Tn→m does not increase with1α monotonically, but instead has a very rich spectrum
depending on1α/ω, n, andm. In particular, it shows a simultaneous quenching for a
certain group of transmission channels. The difference from case (i) lies in the shapes
of the curves: the amplitude corresponding ton → m is approximately proportional to
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Figure 4. T Rn→m versus1, with the same parameters as for figure 3.

|Jn(1L/ω)Jm(1R/ω)|2, and the locations of simultaneous quenching are at the zeros of
eitherJn(1L/ω) or Jm(1R/ω).

(iii) Let T R denote the probability of transmission with an electron coming in from
the right-hand lead and going out to the left.T R is easily obtained by exchanging L and
R in equation (12). Figure 4 showsT Rn→m versus1L, 1R with the same parameters as
for figure 3. The simultaneous quenching and the rich spectrum dependence on1α/ω

(α = L,R), n, andm are similar to the features ofT Ln→m (i.e. Tn→m), but the shapes of the
curves change significantly.

Recently, electron–photon pump phenomena have been observed and studied [8, 9,
20]. A criterion for the occurrence of an electron–photon pump can be derived from the
difference betweenT R andT L. By usingT Lεf ,εi andT Rεf ,εi , the averaged current〈j〉 can be
expressed as

〈j (t)〉 = e
∫

dεi dεf T
L
εf ,εi

f L(εi)
[
1− f R(εf )

]− e ∫ dεi dεf T
R
εf ,εi

f R(εi)
[
1− f L(εf )

]
.

(14)

When the bias is zero and the temperature of the left-hand lead is equal to that of the
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Figure 5. The dependence of the pumping efficiencyη (solid line) and the output powerPout

(dotted line) on the frequencyω. The other parameters are10 = 1R = 0, 1L = 1, ε0 = 1,
0L = 0R = 0.01, and the biasv = 0.9 (µL = 0, µR = 0.9), and the temperature of each lead
is zero.

right-hand lead, the current〈j (t)〉 reduces to

〈j (t)〉 = e
∫

dεi dεf
[
T Lεf ,εi − T Rεf ,εi

]
f L(εi)

[
1− f R(εf )

]
. (15)

Obviously, the electron–photon pump cannot be obtained ifT Lεf ,εi = T Rεf ,εi . On the other

hand, onceT Lεf ,εi 6= T Rεf ,εi , the pumping phenomenon must emerge at a certain gate voltage.
The pumping efficiencyη is defined asη = 〈j (t)〉v/Pin [20], wherev is the bias andPin is
the input power. Assuming that the external field only exchanges energy with the electronic
system, and making the adiabatic approximation, i.e. assuming that the external field does
not change the electronic distribution function in the same region, the input powerPin can
be obtained as

Pin =
∫

dε
∫

dεi (ε − εi)
[
T Lε,εi f

L(εi)(1− f R(ε))+ T Rε,εi f R(εi)(1− f L(ε))
+ RLε,εi f L(εi)(1− f L(ε))+ RRε,εi f R(εi)(1− f R(ε))

]
. (16)

Figure 5 shows the dependences of the pumping efficiencyη and the output powerPout on
the frequencyω of the external field coupled only to the left-hand lead. Bothη andPout

exhibit a series of peaks atω = ωn ≡ (ε0 − µ)/n (n = 1, 2, 3, . . .), andη drops sharply,
while ω is slightly smaller thanωn. From peak to peak,η shows almost no change, but
Pout gradually gets smaller. The reason for this is as follows. Whenω = ωn, the external
field pumps the electron from the Fermi surface of the lead to the dot stateε0 with the
help of then-photon process. Whileω is slightly smaller thanωn, the n-photon process
will be suppressed, and the pumping is mainly caused by the (n+ 1)-photon process; then
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the external field pumps the electron from somewhere in the Fermi sea of the lead to the
dot state withε = ε0 − (n+ 1)ω ' µL − ω, consuming much energy and causing a sharp
reduction ofη.

5. Conclusions

In this work, we studied the electron tunnelling through a quantum dot system under the
influence of oscillating external fields. The main goal was that of finding the time-dependent
behaviour of the transient transmission probability (TTP),Tεf ,εi (t

′, t). The theoretical studies
reveal that whether or not the resonant behaviour is well developed depends critically on
whether or nott ′−t � 1/0. We investigated the properties of the conventional transmission
probability Tεf ,εi , and obtained results similar to those obtained by Wagner, with some
differences. The condition for an electron–photon pump to arise has also been discussed on
the basis of our theoretical results forTεf ,εi .
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[5] I ñarrea J, Platero G and Tejedor C 1994Phys. Rev.B 50 4581
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